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A model of turbulence intensity spreading with self-consistent nonlinear noise is derived
systematically for the simple dynamical model of resistivity gradient driven turbulence. Local
effective drive, thermal conduction damping, nonlinear coupling, and spatial scattering effects are
included. As a consequence of nonlinear mode coupling processes !i.e., triad mode interactions",
turbulence energy can be spatially scattered, leading to turbulence propagation and spreading.
However, the range of any nonlinear mode interactions of the background with a test mode is
restricted to within a few mode scale widths from the test mode rational surface. The speed of a
turbulent spreading front is calculated. This front speed is effectively constant on macroscopic
scales. We show that the effect of self-consistent nonlinear noise on the intensity front speed is
modest, as a consequence of the ordering !c"Lf, where !c is the turbulence correlation length and
Lf is the scale length of the front’s leading edge. The implications of these results for turbulence
spreading models and the important differences between self-consistent mode coupling noise and ad
hoc external noise are discussed. The broader implications of these results for turbulence front
propagation are identified and explained. © 2011 American Institute of Physics.
#doi:10.1063/1.3567142$

I. INTRODUCTION

In tokamak plasmas, transport can be induced by local
instabilities leading to a mixing process. The typical diffu-
sivity is thought to obey gyro-Bohm !GB" scaling, DGB
%#s

2cs /a, with the mixing or correlation scale length of !c
%#s, where #s is the ion gyroradius, cs is the ion sonic speed,
and a is the tokamak minor radius. However, breaking of GB
scaling has been observed, e.g., especially by fast transients,
observed in “cold pulse” experiments.1–3 The characteristic
time scale of such transient responses is about two orders of
magnitude smaller than that of the typical heat diffusion time
a2 /DGB predicted. Such mismatches suggest that the true tur-
bulence dynamics is more subtle than simple diffusion. Also,
inward ballistic !or superdiffusive" fronts of a cold pulse are
also observed in fast transient experiments.4,5 Explaining the
fast time scale of the transient response is a major challenge.

To understand the breaking of average GB scaling, simu-
lations of both turbulence spreading6,7 and avalanches have
been done to study turbulence front dynamics on mesoscales
lmeso. Mesoscales are larger than the mode or eddy correla-
tion length but smaller than the system or mean profile
length scale #s" lmeso"a. Turbulence spreading8–15 propa-
gates or delocalizes the free energy from the unstable to
stable region mainly via nonlinear !NL" coupling interac-
tions, which scatter turbulence intensity, and therefore facili-
tates transport of fluctuation energy in space. The avalanche
depends strongly on the critical gradient !CG" of the mean
profile, can be related to self-organized criticality16–21 phe-

nomena, and may be thought of as sequential overturning or
toppling of the local gradient in response to a local exceed-
ance of the threshold. Thus, both turbulence spreading and
avalanche are possible mechanisms to explain the breaking
of GB scaling.22 Nevertheless, while the avalanche is prima-
rily a process of profile evolution, it also induces turbulence
spreading. It is thus ultimately hard to decouple “spreading”
and “avalanche” in a system where the gradient evolves self-
consistently. In this paper, though, we focus on turbulence
spreading only for the sake of simplicity and tractability.
Thus, the gradient scale length LT is hereafter held fixed. We
argue that the characteristic time scale for turbulence spread-
ing should necessarily be roughly comparable to the charac-
teristic avalanche propagation time.

A theoretical understanding of cold pulse induced fast
transient and breaking of GB scaling has remained elusive.
Thus, we turn to the theoretical framework for describing
turbulence spreading in order to uncover and understand pos-
sible fast time scales. Indeed, recent advances in the devel-
oping theory of turbulence spreading have been motivated by
the challenge of qualitatively modeling such pulse propaga-
tion phenomena.8,14,23 Most recent theoretical results24 sug-
gest that turbulent spatial scattering growth !with a critical
gradient threshold for growth" and self-consistent transport
evolution are all required to model the pulse propagation.
The former captures nonlinear intensity spreading through
nonlinear coupling, while the latter accounts for the drive, as
well as at least partially represents avalanche phenomena. To
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extend the theory, in this paper we study turbulence spread-
ing by using turbulence intensity evolution equation includ-
ing self-consistent nonlinear noise. The intensity field evolu-
tion is then formulated at the envelope field level by
averaging over $ and %.

To motivate the discussion, we first briefly review pre-
vious models. For example, there are three kinds of classical
nonlinear models, K-&,25,26 Fokker–Planck !F–P",27 and CG
models,23,24,28,29 which are compared in Table I. They all, at
some level, describe the dynamics of turbulence propagation
via both linear and nonlinear mechanisms. The K-& model
developed for high Re fluid turbulence couples a fluctuation
energy equation with a local dissipation equation, including
linear growth term, as well as nonlinear diffusion and dissi-
pation terms. The CG model has similar terms as the K-&
model, with an additional critical gradient effect in the
growth term. The fluctuation energy evolution equation of
the F–P model includes nonlinear dissipation and diffusion
terms. The nonlinear noise30 or incoherent source term is
neglected in all the models. However, nonlinear dissipation
and noise emission should participate together in the pro-
cesses of nonlinear transfer, cascading, etc. To self-
consistently conserve energy in nonlinear processes such as
three mode interactions, both nonlinear emission and dissi-
pation of fluctuation intensity are necessarily taken into ac-
count. Thus, it is natural and consistent also to investigate the
effect of nonlinear noise emission on turbulence spreading.
The key point is that not only can turbulence energy be spa-
tially scattered by nonlinear diffusion, but it can also be
emitted at one point and absorbed !dissipated" at a neighbor-
ing point via nonlinear mode coupling. Thus, such a spatial
scattering process transfers turbulence energy in space. The
question is, then, how the noise impacts intensity front
propagation. As shown in Fig. 1, although nonlinear noise
coexists with turbulence almost everywhere, the spatial scale
of transfer is too limited to a few correlation lengths. Thus,
only those modes localized to within a few correlation
lengths of the front leading edge can influence the front
speed. As a consequence, the inclusion of nonlinear noise
induces only a modest acceleration of the turbulence inten-
sity front.

We utilize here a simple model of resistivity gradient
driven turbulence31,32 !RGDT" to derive a thermal fluctuation
intensity evolution equation for inhomogeneous turbulence.
The dynamics of nonlinear mode coupling are determined by
three mode interactions. These nonlinear interactions are re-
stricted to within a range of correlation scales of the rational

surface of the test mode. The correlation length of !c is
determined by the local balance between source and sink. !c
tells how far away free energy is scattered from the point
where it is tapped. Thus, !c is necessarily less than the scale
length of the front’s leading edge, i.e., !c /Lf "1. The emis-
sion of nonlinear noise thus occurs in a scale range wider
than the mode width but narrower than the front’s leading
edge scale. Our calculation then shows that envelope theory
with spatial scattering, local growth, and nonlinear source
dissipation is adequate to describe turbulence spreading. The
front of turbulence spreading will have a characteristic ve-
locity v f %!DT /'c"1/2, where DT is the turbulent diffusivity
and 'c is the turbulence correlation time. In a reaction-
diffusion equation, the diffusive scattering D and the growth
!i.e., reaction" drive ( similarly produce a constant front
propagating speed v f %!(D"1/2 in a quasisaturated state. This
is called the Fisher front speed.33–35 Here, we apply reaction-
diffusion front theory to turbulence intensity front propaga-
tion.

The remainder of this paper is organized as follows. In
Sec. II, the basic model is presented, the structure of nonlin-
ear interaction is discussed, and a turbulence spreading
model including nonlinear noise is derived. In Sec. III, we
analyze the dynamics of saturation, address issues such as
energy conservation, and identify the scales of the correla-
tion length and the structure of nonlinear diffusion. In Sec.
IV, the residual, i.e., the local nonzero difference of nonlin-
ear noise and dissipation effects, is calculated for the test
mode k. The influence of the noise on the local front speed is

TABLE I. Comparison of several theoretical models, with no nonlinear source terms.

Model Equation Effect included Effect ignored

K-& Fluctuation energy K Linear growth Noise spectral transfer

Dissipation & NL damp/diffusion

Fokker–Planck Fluctuation energy Convection Noise spectral transfer

NL diffusion

Critical gradient Fluctuation energy Linear growth NL damping

Mean field NL diffusion Noise

FIG. 1. !a" Nonlinear interactions relevant to influence the front speed lim-
ited to within a correlation length of the front leading edge; !b" noise as a
self-consistent part of the nonlinear mode coupling process, but with a self-
consistently limited range. Ultimately, !c"Lf then limits the effect of self-
consistent nonlinear noise.

032306-2 Wang et al. Phys. Plasmas 18, 032306 !2011"



also calculated. Section V contains discussions and conclu-
sions. In particular, there we discuss the more general lessons
learned about fast transient in the course of this work.

II. BASIC MODEL AND TURBULENCE INTENSITY
EQUATION

We first derive the fluctuation intensity evolution equa-
tion for the RGDT model. This model couples the thermal
fluctuation equation,

#T̃

#t
+ $ · !ṼT̃" + $ · !Ṽ&T'" − )($(

2T̃ = 0, !1"

to the Ohm’s law equation

− $(%̃ = *̃Jz0 =
ctE0

&T'
T̃ . !2"

Here, the current perturbation J̃z is assumed negligible in the
region of interest, where it decouples from the potential per-
turbation %̃ in a “strong” electrostatic approximation. The
parallel direction is approximately the toroidal or z direction.
The subscript “0” indicates an average quantity, and ct
= )d ln *0 /d ln&T') is a proportionality coefficient, relating re-
sistivity to temperature. The electric drift velocity,

Ṽ =
ẑ + $%̃

Bz
, !3"

is incompressible, with $ · Ṽ=0. Multiplying Eq. !1" by T̃!

and then averaging over flux surface by
!4,2"−1*0

2,d$*dz!¯ ", we get the fluctuation intensity equa-
tion

#&T̃2'
#t

+ $ · &ṼT̃2' + 2!&ṼT̃!' · $&T' − )($(
2&T̃2'" = 0. !4"

Here, the thermal fluctuation is

T̃!r,$,z,t" = +
k$,kz

T̃k!r − rk,t"exp!ik$r$ + ikzz" ,

with T̃k!r−rk , t" being the thermal fluctuation amplitude of
the mode k, depending on radial position and time. The third
term on the left-hand side !LHS" of Eq. !4" then becomes an
effective growth term, i.e.,

2+
k

(k
eff&T̃k

2' = 2+
k

k$

kz

ctE0

Bz
$ ln&T'&T̃k

2' , !5"

where (k
eff is the linear growth coefficient of the mode k. For

a mode to grow, (k
eff has to be positive, i.e., (k

eff-0. Since
!ctE0 /Bz"$ ln&T'"0, to keep (k

eff positive, k$ and kz are
asymmetric, i.e., k$ /kz"0. The second term on LHS of Eq.
!4", involving mode-mode interactions, can be rewritten as

$ · &ṼT̃2' = R+
k

+
k=k!+k"

$ · &Ṽk!T̃k"T̃k
!'

= R+
k

+
k=k!+k"

$ · !&Ṽk!T̃k"T̃k
!2"!' + &Ṽk!T̃k"

!2"T̃k
!'

+ &Ṽk!
!2"T̃k"T̃k

!'" . !6"

The first term on the right-hand side !RHS" of Eq. !6" is the
incoherent part of the nonlinear mode coupling, i.e., nonlin-
ear noise, while the other two terms are the coherent parts.
Thus, it is clear to make a closure based on Eq. !6" that all
nonlinear interactions can be written in the form of $ ·J,
where J is fluctuation intensity current !Fig. 2". Because fluc-
tuations are assumed localized and radially similar to each
other, we can further state that the nonlinear noise can be
written as a product of &T̃k

2!r+!1"' and &T̃k
2!r+!2"', where !1

and !2 are the radial displacements from the resonant struc-
ture of mode k to that of modes k! and k", respectively !Fig.
3". These observations are helpful to simplify and understand
the structure of the triad mode interactions. The effective
intensity current,

Jeff!&T̃2'" = − D · !&T̃2'" $ &T̃2' + V&T̃2' ,

has, in principle, both nonlinear diffusion and convection
parts. As we are concerned with radial propagation of a po-
loidal symmetric envelope, the convection velocity goes to

FIG. 2. Nonlinear mode coupling forms and relations.

FIG. 3. Mode shifts. !1 is the displacement from the test mode to back-
ground mode k!, while !2 is the displacement to the mode k". All modes
have the radial Gaussian structure.
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zero, i.e., V→0. This may change for the case of an inho-
mogeneous magnetic field.

Before we move onto the next step, it is important to
know first the characteristic length and time scales of non-
linear mode couplings. The characteristic length scales are
the mode width w, correlation length !k

c of the temperature
fluctuation for mode k, the front scale length Lf, and the
mean temperature gradient length LT= )d ln&T' /dr)−1, as
shown in Fig. 4. The thermal fluctuation correlation length is
roughly comparable to or less than the mode width, while the
mode width is less than the front scale length, which is less
than the mean temperature gradient length, i.e., !k

c.w"Lf
"LT. For localized modes, the three mode interactions are
restricted to within a range of a few mode widths in space.
Thermal conduction is then balanced with local effective
growth and nonlinear dissipation, defining the correlation
length scale. The temperature gradient length is of the system
size. Thus, the scale of nonlinear mode coupling is clearly
separated from the mean profile length. The characteristic
time scales here are the triad mode coherence time !or wave
decorrelation time" 'c and the transient time of the front
propagating through the leading edge region, Lf /v f, i.e., Lf is
the width of front leading edge and v f is the front speed for
locally saturated turbulence. For a smooth front leading edge
!!k

c"Lf", the time scale of intensity front that propagates
through the leading edge is longer than the eddy cascade
time but less than the global transport time scales, i.e.,
1 /'c-v f /Lf -DT /LT

2. For drift wave turbulence, generically,
1 /'c is set by the diamagnetic frequency, so 1 /'c%cs /LT
#i.e., k#s%o!1"$. Similarly, DT%DB#!

/, where DB=#scs is the
Bohm diffusivity, and #!=#s /LT. Here, usually 0"/"1,
where /=0 corresponds to Bohm scaling and where /=1
corresponds to gyro-Bohm. Thus, the intensity front speed is
predicted to scale as v f %cs#!

!1+/"/2. Then v f /Lf

%cs#!
!1+/"/2 /Lf is greater than DT /LT

2 %#scs#!
/ /LT

2

%cs#!
/+1 /LT, but less than 1 /'c%cs /LT. The interesting dy-

namics are all on mesoscales.
Now we can calculate the second order thermal fluctua-

tion for the mode k by expanding Eq. !1" and taking the
radial velocity component only, i.e.,

#T̃k
!2"

#t
+ !)(k(

2 − (k
eff"T̃k

!2" = − +
k=k!+k"

Ṽrk!

#T̃k"
#r

. !7"

The RHS of Eq. !7" can then be rewritten as36

− +
k=k!+k"

Ṽrk!

#T̃k"
#r

= − ,Ṽrk!

#T̃k"
#r

+ Ṽrk"

#T̃k!
#r

- − (k
nlT̃k

!2".

!8"

The terms in the parentheses are the contributions of two
beat modes !k! ,k"", and the rest is due to the contribution of
background modes. (k

nl represents the eddy-damping rate due
to the interactions of test mode k with other background
modes. Because the modes k! and k" form a triad with the
test mode k, the two terms in the parentheses of Eq. !8" give
the same contribution. Thus, the solution of Eq. !7" is

T̃k
!2"!!t" = − 2. dt!Ṽrk!

! !t!"
#T̃k"

!

#r
!t!"

+exp#− !(k
nl − (k

eff + )(k(
2"$!t − t!" . !9"

As fluctuation response must damp as time increases, (k
nl

−(k
eff+)(k(

2-0. In the first term of Eq. !6", #T̃k"
! /#r can be

approximated as −ikr"T̃k"
! on fast variation length scales, kr

−1,
because nonlinear interactions are restricted within a range of
several mode widths.

Under the Markovian approximation,11 the eddy-
damping rate is larger than the rate of spectrum evolution.
Therefore, the two-time correlation function can be ex-
pressed in the form of

&T̃k"!t"T̃k"
! !t!"' = &T̃2!t"'k"exp#− !(k"

nl − (k"
eff + )(k("

2"$!t

− t!" . !10"

Then the divergence of the radial flux of fluctuation intensity
is

#

#r
&ṼrT̃

2' = +
k

+
k=k!+k"

0k,k!,k", k$!

k(!
-2 v0

2

&T'2 Ik!!− kr"
2Ik" + kr

2Ik"

−
#

#r,+
k

+
k=k!+k"

0k,k!,k"
k$!

k(!

k$"

k("

v0
2

&T'2 Ik"
#Ik

#r - , !11"

where v0=ctE0 /Bz is determined by the mean electric field
and toroidal magnetic field, and Ik= &T̃2!t"'k is the thermal
fluctuation intensity of mode k; the spectrum integral thermal
fluctuation intensity is I= &T̃2!t"'=+kIk. The triad mode inter-
action !or nonlinear mode decorrelation" time is10,13,23

0k,k!,k" = )(k
nl − (k

eff + )(k(
2

+ (k!
nl − (k!

eff + )(k(!
2 + (k"

nl − (k"
eff + )(k(

2)−1

% )(k
nl + (k!

nl + (k"
nl )−1

% ))(k(
2 + )(k(!

2 + )(k("
2)−1, !12"

FIG. 4. Characteristic length scales.
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because the relations of (k
eff%)(k(

2 and (k
nl%Dk

nl / !!k
c"2

%)(k(
2 are satisfied at the saturated state.

Finally, we obtain the evolution of the thermal fluctua-
tion intensity,

#I

#t
−

#

#r,+k
Dk

nl!I"
#Ik

#r - = 2+
k

!(k
eff − )(k(

2"Ik + Snoise

− Sdiss, !13"

where

Dk
nl!I" = +

k=k!+k"

0k,k!,k"
k$!

k(!

k$"

k("

v0
2

&T'2 Ik!

is the nonlinear intensity scattering diffusivity,

Snoise = +
k

+
k=k!+k"

0k,k!,k"kr"
2, k$!

k(!
-2 v0

2

&T'2 Ik!Ik"

is the nonlinear noise, and

Sdiss = +
k

+
k=k!+k"

0k,k!,k"kr
2, k$!

k(!
-2 v0

2

&T'2 Ik!Ik

is the nonlinear dissipation. The nonlinear diffusion term
comes from the third term of Eq. !11", while the nonlinear
dissipation and noise are from the second and first terms,
respectively. This is different from the K-& model which has
both a nonlinear diffusion term and a nonlinear dissipation
term, but not a nonlinear noise term. During the triad mode
interactions, two beat modes satisfying the resonance condi-
tion of k=k!+k" beat together to excite another new mode
!i.e., the test mode", while at the same time the excited mode
is also dissipated or damped by other modes via nonlinear
scrambling. The energy flows from the background modes to
the test mode during the excitation process and returns back
during the dissipation process. In general, the energy is nei-
ther gained nor lost by the test mode, but rather flows
through it. The nonlinear diffusion acts as a local energy flux
in radius. Thus, the source Snoise and the sink Sdiss conserve
the energy via the triad mode energy transfer process in the
plasma. The nonlinear diffusion term vanishes at boundaries
upon integral to end points.

Contrasting the results with the two claims above, we
find that they are consistent. Considering the relation be-
tween kr !or kr"" and the radial derivative # /#r, we can easily
see that all the nonlinear terms !such as noise, dissipation,
and diffusion" satisfy the constraint of having the form of
$ ·J, the same as the first prediction. Since Ik!!x!"= Ik!x
+!1" and Ik"!x""= Ik!x+!2" under the assumption of different
modes having the same radial Gaussian structure, the second
claim is also fulfilled.

III. DYNAMICS AT SATURATION

The amplitude dependent radial nonlinear diffusion scat-
ters fluctuation energy to nearby regions to be dissipated
there by parallel thermal conduction. The system then
reaches the saturation state when the radially scattered inten-
sity flux balances the energy dissipated by parallel thermal
conduction. Using the nonlinear evolution equation for ther-

mal fluctuation intensity derived above, we can then calcu-
late the scale of nonlinear diffusion for the saturated state in
this section. The residual, i.e., nonzero difference of nonlin-
ear noise and dissipation effects, is calculated on the scale of
the test mode k, and its influence on intensity front speed is
also discussed.

A. Energy conservation

In this study, all free energy comes from the background
mean temperature profile, and the total energy is conserved
in a self-consistent way. By integrating Eq. !13" over the
system size, we obtain

2
#&T

#t
− .

0

a

dr
#

#r,+k
Dk

nl!I"
#Ik

#r - = .
0

a

dr!Snoise − Sdiss" ,

!14"

with the effective growth term balancing the thermal conduc-
tion term at saturation, i.e.,

.
0

a

dr+
k

!(k
eff − )(k(

2"Ik = 0. !15"

The total energy of thermal fluctuation is defined as &T
=*0

aI /2dr. The nonlinear noise term cancels the nonlinear
dissipation term !shown in Sec. IV A", i.e.,

!S = Snoise − Sdiss = +
k

Dk
nl!I"!kr"

2Ik" − kr
2Ik" = 0,

where Dk
nl!I"=+k=k!+k"0k,k!,k"!k$! /k(!"2!v0

2 / &T'2"Ik!, kr"
2= !x

+!2"2 /w4, kr
2=x2 /w4, and Ik"!x""= Ik!x+!2", and the diffu-

sion term vanishes at free boundaries !i.e., #I /#r=0 at
boundaries", i.e.,

.
0

a

dr
#

#r,+k
Dk

nl!I"
#Ik

#r - = /+
k

Dk
nl!I"

#Ik

#r 0
0

a

= 0,

so the total fluctuation energy is conserved at saturation, as it
must be

#&T

#t
= 0. !16"

B. Correlation length scale

In RGDT, the correlation length !c is determined by the
local balance between source and sink. !c tells how far away
free energy is scattered from the point where it is topped.
Once the correlation length is large enough to exceed the
distance between the rational surfaces of two adjacent
modes, the radial propagation of fluctuation intensity in-
volves transferring energy from mode to mode. To calculate
the correlation length, we can use the saturation criterion of
Eq. !15", which can be rewritten as

.
0

a

dr+
k

ct
k$

k(

E0

BzLT
Ik = .

0

a

dr+
k

)(k(
2Ik. !17"

The ratio of poloidal mode number to toroidal mode number
is k$ /k( =Ls /x, where x=r−rk is the displacement away from
the rational surface of test mode k, and Ls=R0q2 /rq! is the
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magnetic shear length. Hence, saturation occurs for the cor-
relation length

!k
c % ,ct

LsE0

LTBz
-1/3

!)(k(!
2"−1/3. !18"

Here, k(!=dk( /dx=k$ /Ls is the radial derivative of the paral-
lel mode number. The correlation length can be viewed as
the critical radial length for the balance between source, i.e.,
the linear growth, and sink, i.e., thermal conduction. !k

c de-
pends on the poloidal mode number. Thus, !k

c is a typical
nonlinear radial length scale, different from that length scale
of the thermal conduction layer in the linear regime.

C. Scale of nonlinear diffusion

Since the propagation of intensity flux is a key element
in the dynamics of turbulence spreading and nonlinear diffu-
sive scattering is an important part of the flux, the nonlinear
diffusion scale is important in calculating the turbulence
spreading speed. During the turbulence spreading, free en-
ergy is scattered from the rational surface a certain distance
by nonlinear diffusion before being dissipated by radially
varying parallel thermal conduction !Fig. 5". Another obvi-
ous balance condition in this process is that nonlinear diffu-
sion Dk

nl balances the thermal conduction )(k(
2. It determines

the radial structure of thermal fluctuation intensity and gives
the nonlinear diffusion scale as

Dk
nl 1 ,ct

LsE0

LTBz
-4/3

!)(k(!
2"−1/3. !19"

As a result of Eq. !13", the nonlinear diffusion is also mode
number dependent,

Dk
nl = +

k=k!+k"

0k,k!,k"
k$!

k(!

k$"

k("

v0
2

&T'2 Ik!.

Transforming the summation into integrals,37

+
k!

→ +
m!

+
n!

→. dm!. dn!,

and noting q=m! /n!, we get dn!= !)m!)q! /q2"drm!,n! for the
poloidal and toroidal mode numbers !m! ,n!", where q!
=dq /dr. Here, we assume q!-0 throughout the integration
range of rm!,n! from r−w to r+w since nonlinear mode cou-
pling is restricted within the mode width of w !i.e., !k

c.w
and modes decay fast once )x)-w". Hence,

+
k!

→
q!
q2. )m!)dm!.

−w

+w

dx!. !20"

For simplicity, we make a further approximation of decorre-
lation time 0k,k!,k"%1 /)(k(

2. The mode k! has a Gaussian
radial structure, Ik!!x!"= I!r"exp!−x!2 /2w2", with a slow en-
velope variation I!r" and a fast variation of f̃ k!!x!"exp!
−x!2 /2w2", where r for the slow length scale !LT" and x! for
the fast length scale !!k

c". This suggests that the fluctuations
exponentially decay once )x!)-w. The summation of the ex-
ponentially dissipating parts is normalized to unit 1 as

+
k!

f̃ k!!x!" = Cf
q!
q2. )m!)dm!.

−w

+w

exp!− x!2/2w2"dx! = 1,

where Cf is the normalization coefficient for the fast varia-
tion part of the fluctuation intensity. Dk

nl is simplified to

Dk
nl 1 ,ct

LsE0

!k
cBz

-2

!)(k(
2"−1 I

&T'2 . !21"

Comparing Eq. !21" with Eq. !19", we find that the correla-
tion length of test mode k,

!!k
c"2 %

I

&T'2LT
2 , !22"

which is dependent on the amplitude of intensity.
The nonlinear diffusion coefficient for the mode k has

thus been calculated for the saturated state. For a typical
mode, we approximate k$

2 with its mean square value, i.e.,

Dnl 1 ,ct
LsE0

LTBz
-4/3

!)(k̄(!
2"−1/3, !23"

where k̄(!= !k$"rms /Ls is the average of k(! obtained by calcu-
lating the rms value. Similarly, a typical correlation length is
approximated by

!c 1 ,ct
LsE0

LTBz
-1/3

!)(k̄(!
2"−1/3. !24"

IV. FRONT SPEED OF TURBULENCE
SPREADING

The background mean temperature profile is assumed to
be varying slowly in driving turbulence spreading. The ques-
tion is then how fast the fluctuation intensity front propagates
in a given mean temperature profile. Theoretically, a constant
front propagating speed, v f =22(lD, is given by the classic
reaction-diffusion equation: Fisher–Kolmogoroff–
Petrovsky–Piscounoff !Fisher–KPP" equation.33–35 We refer

FIG. 5. Energy transfer and dissipation processes.
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to this speed as the Fisher front speed. Our thermal fluctua-
tion intensity evolution equation derived above is also a
reaction-diffusion equation, although the diffusion coeffi-
cient is nonlinear and depends on the intensity amplitude.
The formula of Fisher front speed then can still be applied
and is relevant to explain the ballistic propagation in the fast
transient experiments, given certain caveats. In this section,
we are going to calculate the residual, i.e., nonzero differ-
ence of nonlinear noise and dissipation terms, on the scale of
the test mode k and discuss the effect of the residual on the
front speed.

A. The residual, i.e., nonzero difference of NL noise
and NL dissipation terms

Although the spatially integrated noise term cancels the
dissipation term, they do not cancel each other locally. This
does not conflict with the energy conservation law since con-
servation is a spatially integrated result, not a local one. For
a test mode k, there is thus a modest residual, i.e., nonzero
difference of nonlinear noise and dissipation effects, on the
scale of the test mode k. This residual influences only the
local dynamics of turbulence spreading. Since the magnitude
residual is modest, its effects on the front speed is also mod-
est.

First, the total nonlinear residual is calculated by

!S = +
k

!Sk 3 +
k

Dk
nl!kr"

2Ik" − kr
2Ik" , !25"

where !Sk is the residual of the test mode k. Even though the
distances between the beat modes and the test mode vary for
different k!’s and k"’s, we set them to be the same as !k

c, for
simplicity. Thus, the thermal fluctuation intensity of the
mode k" can be Taylor expanded in a series of powers of !k

c:

Ik"!x"" = I!r"exp/−
!x + !k

c"2

2w2 0
= Ik!x"/1 −

!k
c

w2x −
1
2
,!k

c

w
-2,1 −

x2

w2- + h.o.0 .

Here, h.o. represents higher order terms of !k
c which can be

ignored. The odd terms in x also vanish upon integration
over x, i.e., +k, since exp#−x2 /2w2$ is an even function. The
fast scale mean square derivatives are then kr"

2= !x
+!k

c"2 /w4 and kr
2=x2 /w4, respectively. Thus, the residual of

mode k is

!Sk = Dk
nlIk!x",1 −

5
2

x2

w2 +
1
2

x4

w4-,!k
c

w2-2

. !26"

The odd terms have not been included above because they
vanish upon integration over x. By keeping only the first
term, and ignoring the other two higher order terms in Eq.
!26", the residual of the test mode k at )x)=!k

c is approxi-
mated as

!Sk 1 Dk
nlI exp/−

1
2
,!k

c

w
-20,!k

c

w2-2

. !27"

Since the correlation length is amplitude dependent,
i.e., !k

c%LTI1/2 / &T', and Dk
nl%)(k(

2!!k
c"2%(k

eff!!k
c"2

%ctLsE0I1/2 /Bz&T' at saturation, the residual is simplified to
!Sk%/I5/2, where /=ctLsLT

2E0 /Bz&T'3w4. However, once we
sum over all the residuals of test modes,

!S 3 DnlI,!c

w2-2

Cf
q!
q2. )m)dm. dx,1 −

5
2

x2

w2 +
1
2

x4

w4-
+exp,−

x2

2w2- = 0,

we can see there is no net residual, only a local residual. This
shows that the nonlinear noise and the dissipation effects
indeed cancel each other upon the summation over all
modes, as required by energy conservation. However, local-
ized small residuals survive. In our simplified model, the
localized residuals bring a correction to the Fisher front
speed for turbulence spreading. In particular, these residuals
may lead to modest variations of the front speed at low q
rational surfaces, which are discussed below.

B. Fisher front speed without the residual

Before studying the influence of the residual, we first
calculate the Fisher front speed of turbulence spreading with-
out the residual. The intensity equation without the noise and
dissipation terms is simply

#I

#t
−

#

#r
,Dnl #I

#r
- = 2+

k
!(k

eff − )(k(
2"Ik, !28"

where the effective growth can be approximated, by using
the correlation length !k

c of mode k at saturation, i.e.,

(k
eff = ct

LsE0

LTBz

1

!k
c .

Using the method of transforming summation into integra-
tion as in Sec. III C, both the effective growth and the ther-
mal conduction terms can be calculated as follows:

+
k

(k
effIk = ,ct

LsE0

LTBz
I-Cf

q!
q2. )m)dm.

−w

+w

exp,−
x2

2w2-4
!k

cdx 3 ct
LsE0

LTBz
I/!c, !29"

+
k

)(k(
2Ik = Cf

q!
q2. )m)dm.

−w

+w

dx)(, m

rLs
-2

!!k
c"2I

+exp,−
x2

2w2-
3 )(k̄(!

2!!c"2I . !30"

Here, !c is the value of !k
c at k(!= k̄(!, and (eff

=ctLsE0 /LTBz!
c as the effective growth rate, independent

of k.
The local fluctuation energy is scattered in two steps.

First, the effective growth logistically limits local saturation
and sets an amplitude dependent correlation length, !c
%LTI1/2 / &T', to balance source and sink. Second, this corre-
lation length defines an effective nonlinear scattering length
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for fluctuation intensity, Dnl%)(k(
2!!c"2%ctLsE0I1/2 /Bz&T'.

The spatial coupling effect induced by such nonlinear diffu-
sion then combines with the local growth to produce a
Fisher–KPP front velocity of v f 322(effDnl. In our case, the
Fisher front speed at saturation is determined by the nonlin-
ear diffusion coefficient and the effective growth rate and is

v f 3 22(effDnl 3 2!ctLsE0/LTBz" . !31"

Of course, the front propagation is ballistic, i.e., d!t"% v̄t,
with a finite constant speed v f %ctLsE0 /LTBz, and intrinsi-
cally nondiffusive. Note that in a reaction-diffusion equation,
diffusion and growth !i.e., reaction" combine to yield a non-
diffusive front speed. This nontrivial envelope dynamics,
spreading at the velocity v f, occurs on length scales greater
than the mode correlation length, but smaller than the mean
profile gradient length, i.e., the ordering !c"Lf "LT is re-
quired for consistency. Front propagation occurs on time
scales longer than the fluctuation cascade time, but shorter
than fluctuation transport time scales, i.e., 'c

−1-v f /Lf
-D /LT

2. Thus, intensity front propagation is a prime ex-
ample of the mesoscale dynamics of turbulence spreading.

More generally, the results of this section suggest that
turbulence intensity front can be defined if the scale ordering
!c"Lf "LT, i.e., fluctuation correlation length" front lead-
ing edge scale"characteristic profile scale length. In that
case, the front will have a characteristic velocity v
%!DT /'c"1/2, where DT is the turbulent diffusivity and 'c is
the turbulence correlation time. In this picture, local balance
of growth and nonlinear coupling to dissipation define the
local saturation level, and the front propagates by turbulent
diffusive scattering. Hence, v f %!DT /'c"1/2 emerges as a use-
ful candidate front speed in the quasisaturated state.

C. Fisher front speed with the residual

We now study the effect of the residual on the front
speed. The spectral equation of thermal intensity with the
residual of test mode k can be rewritten as

#Ik

#t
−

#

#r
,Dk

nl#Ik

#r
- = 2!(k

eff − )(k(
2"Ik + /kIk, !32"

where

/k = ct
LsE0

LTBz

!!k
c"3

w4

is the coefficient of the residual of mode k at saturation. The
dynamics of saturation with the residual are somewhat dif-
ferent from those discussed in the previous section, because
there is now an extra effective source in addition to the
growth term, which comes from incoherent mode coupling.
Then the nonlinear diffusion and the correlation length are
readjusted to a new balance between the sources and the
sink, and finally reach a new saturated state. Similarly, the
correlation length can be recalculated from

)(k(!
2!k

2 = ,ct
LsE0

LTBz
-4!k + /k, !33"

which denotes the local total source balance with the local
sink at the rational surface of the test mode k. Equation !33"
has only one real root, approximately,

!k 3 !k
c,1 +

1
3

!!k
c/w"4- = !k

s .

The readjusted correlation length, !k
s, is slightly larger than

that without the residual. It means that the saturated layer
width of the test mode k is slightly expanded when the re-
sidual drive is included. Then the nonlinear diffusion coeffi-
cient also increases, Dk

nl3)(k(!
2!!k

s"4. The free energy is
transported sequentially by those expanded saturated layers
via a nonlinear mode coupling process. Now the Fisher–
KPP-like front speed is

v f ,k 3 22(k
effDk

nl.

Noticing (k
eff=ctLsE0 /LTBz!k

s at saturation, we then get the
front speed

v f ,k 3 2,ct
LsE0

LTBz
-/1 +

1
2
,!k

c

w
-40 . !34"

This result is slightly faster than the overall front speed v f
without the noise residual. However, the basic scaling of the
overall front speed is not significantly affected by small local
residuals of different modes, because these residuals cancel
upon summation over all modes. Therefore, the residual of
mode k gives only a modest correction to the average front
speed

1v f ,k % !!k
c/w"4!ctE0Ls/BzLT" .

This correction can be ignored for the test mode with !k
c"w.

The comparison for the fronts speed with and without the
residual is listed in Table II.

V. CONCLUSION

In this paper, we have studied the dynamics of turbu-
lence spreading motivated by the problems of fast transient
transport and pulse propagation. A simple mean field model
equation of fluctuation intensity, including local nonlinear
growth, nonlinear dissipation and noise, and decay to small
scales via triad mode coupling, has been derived. The dy-
namics at saturation were analyzed, and the front speeds of
turbulence spreading, both with and without the noise re-

TABLE II. Front speeds of turbulence intensity with and without the re-
sidual.

Residual Correlation length Front speed

Without !macro" ,ct
LsE0

LTBz
-1/3

!)(k̄(!
2"−1/3 vf = ct

LsE0

LTBz

With !micro" !k
c/1 +

1
3
,!k

c

w
-40 vf/1 +

1
2
,!k

c

w
-40
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sidual of the test mode k, have been discussed. This paper
both presents new results and places earlier phenomenologi-
cal models of turbulence spreading on a more systematic
basis.

The principal results of this paper are as follows:

!1" The intensity evolution equation, including nonlinear
noise, is derived, including triad mode coupling pro-
cesses. The mean field intensity equation is shown to
have the generic form

#I

#t
−

#

#r,+k
Dk

nl!I"
#Ik

#r - = 2+
k

!(k
eff − )(k(

2"Ik + Snoise

− Sdiss.

Here, (k
eff is the effective local growth rate, )(k(

2 is the
local dissipation rate, and Snoise and Sdiss are the incoher-
ent and coherent parts of triad mode coupling, respec-
tively, so that Snoise corresponds to emission and Sdiss
corresponds to damping. Dk

nl!I" corresponds to turbulent
scattering on the scale of the fluctuation intensity enve-
lope. Note that this model tacitly assumes three radial
scales such as !k

c, Lf, and LT !namely, the fluctuation
correlation length, the front scale length—this sets the
envelope scale—and the gradient scale length", with the
ordering !k

c"Lf "LT. Triad mode interactions occur on
the scale !k

c. Integrated spatially, the nonlinear noise
self-consistently cancels the dissipation to conserve
total—i.e., spatially integrated—energy. However, local
deviations from energy balance are possible and can be
especially strong near resonant surfaces. Both the emis-
sion and the dissipation of the fluctuation are taken into
account. The nonlinear noise was neglected in previous
theoretical models of turbulence spreading.

!2" The local nonlinear saturation is calculated and is con-
sistent with previous results for RGDT. The amplitude
dependent radial nonlinear diffusion scatters fluctuation
energy, which is ultimately dissipated by parallel ther-
mal conduction. The fluctuation energy is scattered in
two steps. First, the nonlinear effective growth logisti-
cally limits local saturation at an amplitude dependent
correlation length, !c%LTI1/2 / &T', so as to balance
source and sink. Second, this correlation length defines
an effective nonlinear scattering diffusivity for the fluc-
tuation intensity Dnl%)(k(

2!!c"2%ctLsE0I1/2 /Bz&T', so as
to transfer free energy from source to sink. The correla-
tion length sets a characteristic length scale relating the
source !i.e., the growth and the nonlinear noise" to the
sink !i.e., the dissipation". Nonlinear diffusion then acts
as an energy transfer process, which delivers fluctuation
energy to stable or unexcited regions. This, in turn,
drives turbulence spreading.

!3" There is a residual, i.e., nonzero difference of the non-
linear noise and dissipation on the scale of the test mode
k, although no net residual survives summation of the
residuals of all the modes. This test mode residual influ-
ences the local dynamics of the fluctuation intensity
front propagation. The effects are seen clearly in Table
II, where the front speeds with and without the residual

are compared with one another. Without the residual, the
front speed is a constant at the Fisher front speed, v f
%ctE0Ls /BzLT. If the residual is included, a small cor-
rection to the Fisher front speed, 1v f ,k%!ctE0Ls /BzLT"
+!!k

c /w"4, is found at low order rational surfaces, de-
pending on the mode number k. The residual can be
ignored once the correlation length is less than the mode
width, !k

c /w"1, but should be retained if !k
c /w%1. In

that case, the residual can produce an order unity correc-
tion to the magnitude of the front speed.

!4" The characteristic scales in this study are mesoscales.
All processes, i.e., triad mode interaction, Fisher–KPP
front, and turbulence spreading, occur on length scales
comparable to or larger than mode correlation length,
but smaller than the mean profile gradient length, i.e.,
!c"Lf "LT. The time scales are longer than fluctuation
cascade time, but shorter than the global transport time
scales, i.e., 'c

−1-v f /Lf -D /LT
2. Note that a two scale

analysis of fluctuation dynamics is required.
!5" All nonlinear terms of triad mode interactions are writ-

ten in the conservative form of the divergence of a fluc-
tuation intensity flux, i.e., $ ·J, since triad couplings
originate from the intensity flux contribution to the fluc-
tuation intensity equation, i.e., $ · &ṼT̃2'. For free bound-

ary conditions !i.e., Ṽk=0 on boundaries", all flux terms
vanish upon spatial integration. The total energy is con-
served, although local deviations from energy balance
are possible. Then fluctuation energy is transferred only
between different modes of fluctuations.

The model analyzed here is simple but generic. Note that
its basic features:

!a" the coexistence of three length scales, !c, Lf and LT,
with the ordering !c"Lf "LT;

!b" a local mixing or decorrelation rate, also comparable to
the local drive !i.e., growth" rate, i.e., (%1 /'c, for qua-
sistationary turbulence; and

!c" spatial scattering, most conveniently represented by a
turbulent diffusivity DT,

are common to virtually all turbulence models for confined
plasma. Thus, all these models should exhibit spatiotemporal
turbulence front propagation at a speed corresponding to the
Fisher speed v f %!DT /'c"1/2. Note that the Fisher speed is
generic to reaction !growth"-diffusion models, and thus gives
a generic answer to the question of how one extracts nondif-
fusive dynamics from a seemingly diffusive model.

Given the generic character of the intensity front propa-
gation phenomenon, it is interesting to discuss the possible
speeds and their scalings for fronts in drift wave turbulence.
Of course, drift-ITG !Ion Temperature Gradient" turbulence
is the most relevant model for describing cold pulse propa-
gation and other fast transients. For drift wave turbulence,
generically, 1 /'c is set by the diamagnetic frequency, so
1 /'c%cs /L" #i.e., k#s%o!1", and L" is a characteristic gra-
dient scale length$. Similarly, DT%DB#!

/, where DB=#scs is
the Bohm diffusivity and #!=#s /L". Here, usually 0"/
"1, where /=0 corresponds to Bohm scaling, where /=1
corresponds to gyro-Bohm. Thus, the intensity front speed is
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predicted to scale as v f %cs#!
!1+/"/2, so v f %cs#! for gyro-

Bohm scaling and v f %cs#!
1/2 for Bohm scaling. For the ex-

perimentally observed scaling exponent of /%0.7, v f
%cs#!

0.8. This gives several testable predictions for the propa-
gation of turbulence pulses, namely,

!i" the magnitude of the speed,
!ii" the speed scaling with B0, which can be studied with a

toroidal field scan, and
!iii" the speed scaling with isotope. Note that v f

%!Ai"!/−1"/2, so v f is independent of isotope for the
case of gyro-Bohm scaling and v f %Ai

−1/2 for Bohm.
This can be studied by comparing fast transients in
hydrogen and deuterium plasmas.

Finally, we note that pulse propagation speed scaling can be
used to probe the underlying transport dynamics.

The model discussed here is exceedingly simple, so this
work should be regarded as only a beginning. Future work
will focus on extensions to more realistic turbulence models
with more realistic geometric structure—i.e., drift wave tur-
bulence in a torus. A key question is how nonlinear interac-
tion competes with linear coupling of poloidal subharmonics
and with zonal shearing. More fundamentally, one should
look past quasilocal diffusion to explore front propagation in
systems with nonlocal transport, as recently observed in full
f , flux driven ITG simulations.38 In that case, however, sim-
ply replacing the local diffusivity of the Fisher type equation
with a nonlocal scattering operator seems inconsistent, as the
drive will surely also become nonlocal in the presence of
avalanching. Thus, a consistent nonlocal formulation of tur-
bulence spreading dynamics remains an elusive challenge.
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